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Results of hot-wire measurements in a plane incompressible jet are reported. 
The flow was found to be self-preserving beyond x/d > 40 and measurements 
were made up to x/d = 120. The quantities measured include mean velocities, 
turbulence intensities and third- and fourth-order terms, as well as two-point 
correlations and the intermittency factor. Conditional sampling techniques were 
used to obtain exclusively data, within the turbulent zone of the jet. The results 
are compared with previous investigations. 

This is the third paper in a sequence providing data on turbulent free shear 
 BOWS. 

1. Introduction 
The present investigation was undertaken in order to extend the available 

information on the two-dimensional self-preserving jet. The plane jet has been 
investigated extensively and sufficient data are available for many practical 
engineering purposes. On the other hand, very few definitive experiments have 
been carried out in which an attempt has been made to study the structure of 
the flow. 

This flow was first investigated by Porthmann (1934), who measured the 
mean velocities in the developing region, covering a distance of 25 slot widths 
downstream from the nozzle. Miller & Comings (1957) extended the range of 
measurements to 40 slot widths and measured the streamwise component of 
the turbulent fluctuations. However, it is unlikely that self-preservation was 
attained with this extension. Van der Hegge Zijnen (1958) measured the mean 
velocities and turbulent intensities over the same distance as Miller & Comings. 
The intensities presented by the former author are lower; however he used a 
constant-current anemometer while Miller & Comings used constant-temperature 
equipment. The poor response of the constant-current anemometer to high 
frequency fluctuations could possibly be responsible for the low intensities 
reported by Van der Hegge Zijnen. 

Knystautas (1964) mapped the mean flow field up to a distance of 400 slot 
widths downstream from the nozzle and established clearly the similarity of 
mean velocity profiles in this flow. Bradbury (1965) studied the structure of a 
two-dimensional jet exhausting into a weak external stream. In  this way, 

30 F L M  73 



466 E.  Gutmark and I .  Wygnanski 

measurement errors resulting from the high turbulence intensity at the edges 
of the jet were avoided. The use of a nonlinearized constant-current anemometer 
probably forced Bradbury to sacrifice precise self-preservation and thus attain 
low local turbulence levels. The most detailed investigation was made by 
Heskestad (1965), who used constant-temperature, linearized, hot-wire anemo- 
meters and thus provided data in the self-preserving region more than 100 slot 
widths from the plane of the nozzle. 

Preliminary observations by Bradbury (1 965) indicated that all free turbulent 
shear flows may have a similar structure. This similarity should not be restricted 
by local isotropy considerations but should apply to the larger eddies as well. 
I n  order to determine the validity of this hypothesis, the measurements should 
exclude the fluctuations in the irrotational flow outside the jet boundaries, 
which may be affected by the geometry of the particular experiment. Conditional 
sampling techniques can provide data obtained exclusively within the turbulent 
zone. With this in mind, the present investigation was undertaken. Furthermore, 
similar investigations had been carried out in an axisymmetric jet and in a 
mixing layer. This third investigation, of a two-dimensional jet, will com- 
plete the compilation of data on incompressible turbulent jets taken with 
identical instrumentation. These flows can thus be compared without having to 
account for discrepancies in measuring techniques (i.e. the inaccuracies or errors 
are presumably the same for all three flows). 

Most of the measurements were made 120 slot widths downstream from the 
nozzle, which proved to be well within the self-preserving region. The exhaust 
velocity was 35 m/s and the Reynolds number based on the width of the slot 
was 3 x 104. 

2. Apparatus and instrumentation 
The apparatus used is shown schematically in figure 1. A variable-speed axial 

blower provided the airflow through a rectangular orifice 1-3 cm wide and 
50 cm long. The orifice was milled in a 1 cm thick brass plate using a high- 
precision milling machine to an accuracy of 0.001 cm over its entire length. The 
plate was mounted flush in a plane vertical wall which extended I00 cm on each 
side of the orifice. The centre-plane of the jet was perpendicular to this wall. 
The jet was confined by two horizontal walls placed just above and just below 
the nozzle and extending 200 cm downstream of the slot. The mean flow was 
two-dimensional except in the vicinity of the walls, where a 'saddle-back' 
profile developed (see also Heskestad 1965), but the variation in total head 
across the span of the jet did not exceed 2 yo over 35 cm at xld < 100. 

The entrained air passed through two 16 mesh screens set 2 cm apart and 
stretched around the supports of the confining walls as shown in figure I. The 
screens eliminated most room draughts, which were otherwise noticeable at 
large distances from the nozzle. The temperature in the room was maintained 
constant to within 3.1 "C and the air passing through the fan was filtered. The 
exit Reynolds number was 3 x lo4 and the turbulence level was about 0.2 yo. 

Measurements were made with DISA 55-DO1 constant-temperature anemo- 



The planar turbulent je t  467 

L 1.3 cm 

200 cm 

cm 200 cm 

- 

FIQURE I. Schematic diagram of experimental apparatus. 

meters in conjunction with DISA 55-Dl0 linearizers. The linearizers were cali- 
brated in known flow conditions in the core of the jet. Fluctuations in lateral 
components were measured with symmetric X-arrays and with single inclined 
wires. The sensitivity of these sensors to the lateral components of the velocity 
fluctuations wits obtained by yawing them in a plane parallel to the plane of the 
cross. The wires were manufactured by DISA and constructed from 5pm or 
sometimes 2.5 ,urn tungsten wire. Some wires were gold plated, with the active 
(unplated) portion varying in length from 0-4 to 1-2 mm. 

The signal was processed using various analog electronic circuits for adding, 
subtracting, multiplying, differentiating and integrating purposes. All compo- 
nents except the differentiator were calibrated for frequencies ranging from 
d.c. to 15 kHz. The lower bound on the differentiator was approximately 50 Hz. 
The method of acquisition of zone-averaged data was discussed in an earlier 
paper (Wygnanski & Fiedler 1970). The intermittency signal was continuously 
monitored and compared with the longitudinal component u‘ of the velocity 
fluctuations, which was high-pass filtered a t  100 Hz and squared before being 
displayed on a dual-trace Tektronix memory scope. The signal chosen for measur- 
ing intermittency was d2 + (au’/8t)2, which was slightly smoothed to prevent 
excessive drop-outs. 

3. Intermittency 
Cumulative data on the lateral variation of the intermittency factor far 

downstream of the nozzle are shown in figure 2. The results are well represented 
by an error function as shown in the probability plot (figure 3). The average 
location of the interface (i.e. the location at which the intermittency factor 
y = 0.5) is 9 = y/(x - xo) = 0.178, where %,is the distance between the hypothetical 
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FIGURE 2. Cumulative distributions of the intermittency factor and interface crossing 

from Heskestad (1965) ; - - -, Bradbury (1965). 
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FIGURE 3. A probability plot of the intermittency distribution. u = 0*043x, j = 0.178. 
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origin of the flow and the nozzle. The excursions of the interface about this 
position are represented by a standard deviation c = 0 .043~ .  

The need for the screens (shown in figure 1) became apparent during the pre- 
liminary measurements of intermittency, when fluctuations of relatively large 
amplitude were observed at the outer edges of the jet. The addition of the screens 
eliminated these fluctuations and narrowed the intermittent zone without 
effecting the mean velocity profile. The intermittency distribution in the ab- 
sence of the screens is shown in figure 2. Evidently the screens have a profound 
effect on y even in the central region of the jet (7 < 0*13), where the y measured 
in their absence agreed quite well with the results of Heskestad (1965). Never- 
theless for 7 > 0.14, the intermittency measured by Heskestad drops faster than 
the present investigation would indicate in the absence of screens. It is quite 
plausible to attribute the discrepancy to room draughts, which might have been 
stronger in the vicinity of the present apparatus. The scale of the room draughts, 
which corresponds to the distance between the horizontal plates (i.e. a character- 
istic length of the apparatus) and is approximately equal to the width of the jet 
a t  x/d N 120, might have a stronger effect on denting of the interface in spite of 
the fact that their intensity is small relative to the turbulent intensity of the jet. 
The intermittency distribution obtained by assuming that 

agrees with the measured intermittency distribution for 7 < 0.16. For r] > 0.16 
the distribution of intermittency calculated from the flatness factor appears to 
be wider than that actually measured. 

A plane jet exhausting into a slow-moving parallel stream (Bradbury 1966) 
is narrower than a comparable one exhausting into quiescent surroundings. 
The direction of the entrained flow, which is parallel to the axis of the jet in this 
case, has a calming effect on the interface and severely limits the entrainment 
capacity of the jet and hence its growth with downstream distance. For the 
purpose of comparison between Bradbury’s results and ours the abscissa variable 
in figure 2 was changed to y/p+., where y+m is the distance from the plane of 
symmetry a t  which the velocity relative to  the free stream is half its maximum 
value. The agreement between the two results when compared on this basis is 
very good. 

The normalized frequency f Ifmax with which the interface crosses a given 
point is also shown in figure 2. The normalization was necessary because f is 
very sensitive to  the amount by which the signal chosen for the detection is 
smoothed. The ratio f / f,,, was found to  be insensitive to the smoothing. The 
curve has a peak at 7 = 0.14, corresponding to y = 0.7. This result contradicts 
previous observations in mixing layers and boundary layers, where the maximum 
crossing rate of the interface occurred at y = 0.5. This implies that the turbulent 
interface is more convoluted in its ‘valleys’ than in its ‘ridges’ and that the 
small-scale turbulence, which is stronger at the centre of the jet, has some effect 
on the interface. 
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FIGURE 4. The conventional mean velocity profile. V, x/d = 118; X ,  x/d = 103; 
m, z/d = 88; @, x/d = 76; 0, z/d = 65. -...-, Knystautas (1964); --, Heskestad 
(1965); ---, Bradbury (1965). 
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FIGURE 5. The growth of the jet with downstream distance. -. . .- , Knystautas (1964); 
--- , Bradbury (1965); - - , Heskestad (1965); + + + + +, Miller & Comings (1957); 

, Van der Hegge Zijnen (1958); 0,  present results. 
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4. The mean velocity 
The mean velocity profile was measured with a Pitot tube and with a hot 

wire. Both instruments recorded identical velocities. However the scatter in 
the hot-wire data was significantly reduced by using long integration times. 
Measurements were made across the entire jet in some cases in order to establish 
the symmetry of the flow about its centre-plane. The hot-wire results were 
corrected for high turbulence intensity. 

Velocity profiles normalized with respect to the maximum velocity at a given 
value of x/d are plotted in figure 4. The abscissa variable is the dimensionless 
distance 7 from the plane of symmetry. The profiles are similar and have the 
usual bell shape. The results of Heskestad, Bradbury and Kynstautas are 
plotted for comparison. The agreement between the four sets of data is good for 
7 < 0.1, but for 7 > 0.1 the profile measured by Heskestad is somewhat wider 
than the rest. 

The growth of the jet with downstream distance is given in figure 5 and 
compared with five other sets of results. The jet spreads linearly with z and the 
locus of the half-velocity points is given by 

y*m 2: O~l(x-Zo). 

The results of Van der Hegge Zijnen (1958), Miller & Comings (1957), Kny- 
stautas (1964) and the present investigation are in good agreement, yielding 
xo 2: - 2d, but the spread of the jet reported by Heskestad (1965) is given by 
ygm = 0.1 l(x - 6 4 .  However, the experimental apparatus of Heskestad differed 
from all the others since it had a long approach channel separating the nozzle 
from the plenum chamber. The jet, upon leaving the nozzle, probably had a 
velocity profile typical of channel flows having a high turbulence level averaging 
2-4 %. In  all other investigations attempts were made to lower the turbulence 
level at the exit and produce a ‘ top-hat ’ profile. The different initial conditions 
are most probably responsible for the shift in the hypothetical origin and the 
slightly different rate of spread of the jet. Crow & Champagne (1971) were able 
to change the initial rate of spread of a jet and the location of its hypothetical 
origin by imposing on it a sinusoidal surging equivalent to 2 yo of the mean exit 
speed. Different spreading rates of a self-preserving mixing layer have been 
obtained by placing a trip wire near the origin of the flow (Batt, Kubota & 
Laufer 1970; Champagne, Pao & Wygnanski 1973) and it becomes questionable 
whether a universal self-preserving state actually exists or whether it can only 
be approached asymptotically for very large distances from the origin. The 
effect which the initial conditions have on the spread of the fully developed 
turbulent jet seems to be small; however no definitive statement can be made 
on the basis of the available data. 

The results of Bradbury are also shown in figure 5,  but they should not be 
compared with the others, because Bradbury’s jet exhausted into a parallel 
stream which was moving at 0-16 of the jet exhaust velocity. In  this case, al- 
though the conditions for self-preservation are not satisfied, it is nevertheless 
interesting to see the effect of the secondary stream on the growth of the jet. 
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FIO~GE 6. The decay of the mean velocity along the centre-line of the jet. Curves and 
symbols as in figure 6; V,(U,- U m ) / ( g ~ -  U,)z is the ordinate variable for Bradbury’s 
results. 

The decay of the velocity scale DM with x is given in figure 6, where U, is the 
velocity at the plane of the nozzle and OH is the maximum velocity at a given 2. 
I n  general, uM cc x-4; in Bradbury’s case, however, momentum and similarity 
considerations yield 

U,(V,- Urn)/(&- U,)Z = O.l88(2/d- 3), 

where U, is the velocity of the external flow. This equation degenerates into the 
conventional decay law of a jet in quiescent surroundings as Urn+ 0. All the 
experimental results collapse onto a single universal curve with the exception 
of Heskestad’s data. One may again speculate that the decay of the maximum 
velocity in the jet is somewhat dependent on the initial conditions. Table 1 
provides a comparison of the various exit parameters reported. Of particular 
interest is the last column, which gives the ratio of the momentum of the jet at 
any cross-section to the momentum at the exit. These momenta were computed 
on the assumption that the pressure is constant across the jet and the velocity 
at the exit plane is uniform. The ratio J/J, is approximately 0.9 for a well- 
designed nozzle. The losses are attributed to the depletion of momentum in the 
internal boundary layers and a reduced pressure at the plane of the nozzle as a 
result of entrainment (Knystautas 1964; Wygnanski 1964). Bradbury’s jet 
emerged from a nozzle which was located at the trailing edge of an airfoil, thus 
enabling the entrained streamlines to be approximately parallel to the axis of 
the jet and essentially eliminating the second cause of momentum loss. Hence 
in his case J/J, = 0.96. The plane from which the jet emerged in the case of 
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Author(s) Re x lo-* d (in.) Contraction JIJot 

0.611 
0-93 Knystautas (1964) 4.1 0.245 24.5 

Miller & Comings (1957) 1-78 0.500 56 0.87 
Van der Hegge Zijnen (1958) 1-33 0.197 16 0.890 
Present investigation 3.0 0.512 41.2 0-890 

Bradbury ( 1965) 3-0 0.375 2.67 0.96 
Reskestad (1965) 3.4 0.500 2f 

4) _ _  t J = p s  V(U-U, )dy ;  J, = pU,(V,-U,)d.  

$ The contraction is very rapid and resembles a thin orifice plate. 

TABLE 1 
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71 

FIGURE 7. The conventional and turbulent zone-averaged velocities. 
0, conventional; 0, turbulent zone; ---, irrotational zone. 

Knystautas (1964) was barely one order of magnitude larger than the width of 
the orifice, contributing to a relatively large J/Jo = 0.93. The ratio of the mo- 
menta in Heskestad’s experimental apparatus is exceptionally low, suggesting 
that the initial velocity profile is highly non-uniform; in fact the nozzle design 
resembles a thin orifice plate and the ratio J/Jo N 0.6 is characteristic of an 
orifice discharge coefficient. 

The mean velocity in the turbulent zone is identical to the conventional mean 
velocity for 7 < 0.1 (i.e. as long as y = 1) but is higher than the conventional 
mean velocity at the outer edge of the jet (figure 7). It has been observed that the 
fluid in the ‘valleys’ outside the turbulent zone is accelerated in the streamwise 
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direction by the turbulent bulges passing it. The velocity which the irrotational 
fluid acquires can be estimated from figure 7, by using the simple relation 

where the subscripts T and I refer to the turbulent and irrotational zones 
respectively. 

The general relationship between the turbulent and irrotational zone-averaged 
velocities in a jet is similar to that at the outer edge of %I mixing layer. I n  both 
instances it is the turbulent fluid which accelerates the ambient fluid. A quanti- 
tative comparison at the average location F of the interface shows that 

where the additional subscript m refers to  the mixing layer and J refers to the jet. 

i7 = Q + U 1 ( 1 - y ) ,  

(UIm/UIJ)y = 2.4, (Um/OJ)p = 1.85, (DTm/UTJ)-p = 1.67, 
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FIGURE 10. The conventional distribution of the transverse velocity fluctuations. 0, 
x/d = 143; A ,  x/d = 129; v ,  x/d = 118; m, x/d = 106; 0,  x/d = 95. --, Heskestad 
(1965); ---, Bradbury (1965). 

Thus when the velocities at  the centre-plane or in the potential core of the two 
flows are equal the turbulent velocity at the interface of the mixing layer is 
higher than the turbulent velocity at the interface of the jet. The ratio between 
the corresponding potential velocities is even higher, implying that the mixing 
layer is capable of more vigorous momentum transfer from the turbulent zone 
to the surroundings than the fully developed jet. Figure 7 also shows the lateral 
velocities 7 and rT calculated from the respective profiles by applying 
continuity. 

5. Fluctuation intensities and shear stress 
The conventional r.m.8. values of the three components of the velocity fluc- 

tuations are shown in figures 8-11, while the turbulent shear stress is shown in 
figure 12. The measurements were made with X-wires, inclined single wires and 
normal wires. The results were corrected for finite turbulence levels by using the 
response equations derived by Heskestad (see equations 23-29,36-39,46 and 48 
of his (1965) paper; all the correction terms inserted into those equations were 
measured). 

The normalized turbulent intensities on the centre-plane of the jet attain 
their self-preserving state about 30 slot widths downstream from the nozzle 
(figure 8). The approach to self-preservation in a two-dimensional jet thus occurs 
much earlier than in an axisymmetric jet (Wygnanski & Fiedler 1969) or a two- 
dimensional wake (Townsend 1956, p. 138). In contrast to an axisymmetric jet 
there is no indication here that the transverse and lateral components (w'a)* 
and (v'2)* of the velocity fluctuations attain self-preservation long after the 
(2L'2)& component does. Bradbury (1965) estimated the distance necessary for 
self-preservation to be given by x/d 2 90. He estimated this distance on the 
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FIGURE 11. The conventional distribution of the lateral velocity fluctuations. X-wire: 
0, x/d = 143; A, x/d = 129; v ,  x/d = 118; 0, x/d = 106; a, x/d = 95. --, Heske 
stad (1965) ; - , 45' hot wire; - - - , Bradbury (1965). 
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FIGURE 12. The conventional distribution of the turbulent shear stress. -, calculated 
from mean velocity profile; -*--, 45' hot wire, corrected; + ,45O hot wire, not corrected. 
Other notation as in figure 11. 
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basis of Townsend's (1956) measurements in a wake. However his own findings 
agree rather well with the present results and the results of Heskestad (1965). 

Two sets of measurements of (u'2)* are shown in figure 8. This is because the 
apparatus was moved after two years to another location and some results were 
checked before this paper was written. No significant differences were observed 
as a consequence of the move. The results on the centre-plane are in good agree- 
ment with Heskestad's results in the region where self-preservation is expected. 
The (21'2)+ measurements reported by Bradbury are somewhat lower than the 
present values, implying the possibility that even a very small external velocity 
may have a profound effect on the state of self-preservation. 

The magnitude of (T2)* along the centre-plane of the jet is higher than that of 
either (p)* or (w'2)* ((z)$/(s)* = 0.71 and ( 7 2 ) * / ( z ) *  = 0.82) and thus any 
arguments for complete isotropy even in the absence of local shear can not be 
considered seriously. Anisotropy was observed in all other free shear flows which 
were investigated and the two-dimensional jet is no exception. 

The intensity profiles measured by Heskestad and Bradbury, as well as here, 
are compared in figures 9-1 1. The (T2)* profile of Heskestad compares favour- 
ably with the profile that we have measured. The profile of Bradbury (although 
compared on the basis of y/ygm rather than q)  is still much narrower and has a 
strong peak at y/ytm = 0.8. The intensity of this peak relative to the intensity 
at the centre is indicative of a lack of self-preservation. 

Turbulence is not generally capable of adjusting itself quickly to local condi- 
tions, and so the termination of the irrotational core, some 5-10 characteristic 
nozzle dimensions downstream of the orifice, may still have an effect on the 
flow far downstream. The turbulent intensity resulting from the merging of the 
two mixing layers has a very strong saddle shape, which slowly disappears with 
increasing z. Thus, the larger the ratio u&&kEntre the stronger is the indica- 
tion that the measurements were made too close to the nozzle. In  an axisymmetric 
jet (Wygnanski & Fiedler 1969) the distribution of (u'2)* had a saddle shape 
whenever the measurements were made a t  x/d < 30. A similar peak is shown by 
Bradbury in the (w'2)* profile. 

I n  the central core of the jet Bradbury observed a (*)* profile 25 yo lower 
than those observed by Heskestad and by us, a (w7)* profile approximately 
identical to ours and a (v'2)* profile 15 % higher. The agreement between Heskes- 
tad's results and ours is fairly good for q < 0.1. For q > 0.1, however, Heskestad's 
(?)* profile is consistently lower than ours, his (w'2)* profile agrees well but his 
(d2)* profile is significantly higher. One may attribute the differences to the 
prevailing direction of the entrainment field and the strength of the room 
draughts. 

The measured distribution of the turbulent shear stress u12)) is compared 
with the distribution calculated from the corrected mean velocity profile by 
neglecting the normal stresses in figure 12. The agreement between the two is 
excellent. The shear-stress distribution also agrees very well with Bradbury's 
measurements but is higher than Heskestad's. It shouId be pointed out that 
Heskestad's measured values of do not agree with his calculations. In  the 

-- 
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FIGURE 13. The conventional (curves) and turbulent zone-averaged (symbols) distribu- 
tions of the three components of the turbulence intensity. -, a, (u -T&uM; ) / -- - 
A, ( d 2 ) * / l f f M ;  -.-*- > m$ ( F ) * / o M .  
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FIGURE 14. The conventional and zone-averaged distributions of the turbulent shear 
stress. ___ , conventional; 0, turbulent zone; - - - - , irrotational zone; -x-, 
calculated from turbulent-zone mean velocity profile. 
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FIGURE 15. Variation of the shear-stress correlation across the jet. -, present 

measurements; - - -, Bradbury (1965) ; - -, Heskestad (1965). 

axisymmetric jet the calculated shear stress agrees well with the measurements 
of u 7  but in the mixing layer (Wygnanski & Fiedler 1970) the calculated shear 
is in error and there is actually a discrepancy of about 20 % between the data 
and the calculations. Since there is some question as to the accuracy of DISA 
X-wires (Jerome, Guitton & Pate1 1971) the experiments were repeated using a 
single inclined wire. The results were identical and are compared in figures 11 
and 12. From figure 12 one may also estimate the importance of correcting the 
hot-wire response equations for large intensities. The differences are significant 
for7 > 0.1. 

The turbulent zone-averaged intensities are compared in figure 13 with the 
conventional distributions of these intensities. The trend is very similar to  that 
observed in a mixing layer, namely the turbulent zone averages become high in 
comparison with the conventional averages at the outer extremes of the jet. 
Also, the distribution of is very high in comparison with the conventionally 
measured distribution of mat the same 7 for 7 > 0.15 (figure 14). This indicates 
that in the irrotational valleys is very small (figure 14). The lack of irro- 
tational fluctuations gives the a trace a very strongly burst-like appearance 
in the outer region of the jet (see also Wygnanski & Fiedler 1969, figure 10). 

The shear stress computed from D .  does not agree with the measured values 
of ( u v ) T .  The shear-stress correlation in the turbulent zone (figure 15) approaches 
unity at 7 = 0.2 while the conventional value is still less than 0.7. It is interesting 
to note that the correlations measured by Heskestad and Bradbury drop at  

> 0.15 while the correlation measured by us increases monotonically with 
increasing 7. 
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FIGURE 16. The longitudinal correlation along the centre-plane of the jet. A, = 0.0479~. 
Q, x/d = 78; 0 ,  x/d = 93; 0, z/d = 106; V, x/d = 116; A ,  x/d = 128. 

6. Two-point velocity correlations 
The longitudinal correlation coefficient a t  any point in the jet is defined by 

and the lateral correlation coefficient by 

This definition alleviates a little the difficulty of defining the point relative to 
which the correlation is measured in non-homogeneous flow. 

The distribution of Bll(r, 0,O) along the axis of the jet (figure 16) indicates 
that the large-scale structure grows linearly with x, i.e. that the flow is self- 
preserving. The ratio Ar/y4m of the integral scale 

A, = ~ o ~ R ~ , ( ~ , O y O ) d x  

t o  the width of the jet is equal to  0.47 for the two-dimensional jet and 0.45 for 
the axisymmetric jet (Wygnanski & Fiedler 1969). The lateral integral scales 
A,/y4, of the two flows are also in reasonably good agreement, implying that 
the gross behaviour of the two jets is similar in spite of the differences in geometry. 
(Only the positive area under the R,,(O, T ,  0) correlation curve (figure 17) was 
considered in computing Ag.) 

A closer examination of the correlations in the two flows shows some marked 
differences. 

(i) The negative dip in the R,,(O, r, 0) correlation in the two-dimensional jet 
is stronger than that in the axisymmetric jet and extends to Ay/(x-x,) = 0.3. 



The planar turbulent j e t  481 

FIGURE 17. The lateral correlation along the centre-plane of the jet. A, = 0.0219~. 
v ,  x/d = 116; 0, z/d = 105; 0,  x/d = 95; B, x/d = 81; 0, Z/d = 70. 

0 0.05 0.10 0.15 0.20 0.25 

A X / ( X  - Xo) 
FIUURE 18. Variation of the longitudinal correlation across the jet. xjd = 93. 

0 A 'I 0 0 

0 0.05 0.10 0.15 0.20 
Af\x 0.0479 0.0702 0.0889 0.0876 0.0606 
T 

I n  the axisymmetric jet R,,(O,r,O) vanishes for Ay/(x-z,) > 0.12, but this is 
not so in the two-dimensional jet. In other words, the large eddies are preserved 
longer in the two-dimensional configuration. This is hardly surprising because 
velocity perturbations decay more slowly in the two-dimensional jet than in the 
axisymmetric jet. 

(ii) Both the integral scales A, and Ag increase monotonically with 7 in the 
axisymmetric jet. However, the rate of increase d A , / d ~  becomes smaller a t  the 

FLM 73 31 
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FIGURE 19. Variation of the lateral correlation across the jet. x/d = 93. 

0 A v 0 
A,/. 0.0219 0.0414 0.0414 0.0304 
1 0 0.05 0.10 0.15 

edge of the jet. I n  the two-dimensional flow the integral scales attain a maximum 
at r 1: 0.1 and then decrease with increasing 7. (See figures 18 and 19.) 

(iii) The negative dip in the R,,(O, r,  0) correlation curves in the axisymmetric 
jet disappears at r > 0.05 (Wygnanski & Fiedler, 1969, figure l6),  while the 
R,,(O, r,  0) correlations in the present flow exhibit an even more negative come- 
lation with increasing r. At r = 0.15 the value R,,(O, r, 0) = - 0-5 was observed 
at Ay/(x-x,) = 0.23. 

One may compare the standard deviation CT of the interface from its mean 
location P with the lateral integral scale AB. The ratio a/A, was observed to be 
approximately unity at y = Y in all the turbulent shear flows considered, which 
means that the interface is primarily contorted by the lateral large-scale eddies. 

The value of Af deduced from integrating the R,,(r,O,O) correlation was 
compared for two locations in the flow with the value of A, calculated from the 
one-dimensional power spectrum E,(k), i.e. from 

A, = 4n[E,(O)/D]. 

The two results were within 5 yo of one another. 

7. Dissipation terms and microscales 
Three temporal derivatives were measured in order to estimate the dissipation 

term in the energy equation. Previous experience enabled us to take one short 
cut, namely to use Heskestad’s (1965) transformation from temporal to spatial 
derivatives without the necessity of measuring the convection velocity of the 
dissipation scales (see Wygnanski & Fiedler 1970, figure 23). 



The planar turbulent j e t  483 

0 10 20 30 40 50 60 70 80 90 100 110 120 

XId 
FIGURE 20. The dissipation terms along the centre-plane of the jet. 

- x los, Heskestad (1965). 

awl 2 xv av! xv 
Present results: 0 ,  (g)’E x 103; v ,  (a,) e x  los; A,  (z) 0s” 10’. 

No wire-length corrections were applied to the data because it was estimated 
that the attenuation of the temporal derivatives was small (4 < lw/rk < 12, 
where 71, is the Kolmogorov microscale and 1, is the length of the wire). Wyngaard 
(1969) has shown that 90 % response to (au’ /a~)~  is obtained provided that 
Zw < 471,. A detailed discussion of this point was also given by Champagne et al. 
(1973). 

The dissipation terms increase almost linearly with x along the centre-plane 
of the jet (figure 20). The lateral and transverse derivatives and 
(a~’/ax)~ are almost equal while ( a ~ ’ / a x ) ~  is much lower than both. However the 
isotropic relation 

does not hold everywhere in the jet. Isotropic relations do seem to hold close to 
the exit, where most probably the jet is not yet fully self-preserving. The agree- 
ment with the values of (au‘/a~)~ measured by Heskestad is very good. In  order 
to make the comparison Vk2 (a~’ / i? t )~  was taken from figure 20 of Heskestad’s 
paper and multiplied by the factor xv/(8$+2L’2 + 2d2 + w ’ ~ )  U,, which was 
again deduced from his 1965 paper. The increase in the dissipation terms with 
x signifies that the total turbulent energy budget will also change with x. Further- 
more the lateral profiles of the dissipation terms are not similar even for x/d > 100 
(see figures 21 and 22). I n  the outer region ofthe jet (7 > 0.13) the conventionally 
averaged dissipation terms are all approximately equal and almost independent 
of x. The turbulent zone averages on the other hand vary with x across the 
entire jet (figure 22). In  the central region of the jet there is a tendency towards 
isotropy, with ( a t ~ ’ / a x ) ~  and ( a w ’ / a ~ ) ~  increasing much faster than (au’/a~)~ as 7 
decreases. The turbulent zone averages of (a~’/ax)~ are almost constant across 
the jet. 

(av’/ax)z = 2(au’/ax)z 

- -- 

31-2 
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(%) au' a %X103: xv FIGURE 21. Conventional, lateral profiles of the dissipation terms. - - 

&' a xu aw' a xu 
A , x / d  = 120; u , m / d  = 100; .,x/d = 80. (G) x lo3, (z) q X lo3: A , x / d  = 120; 

0, x/d = 100; 0, x/d = 80. 

4l- 

0 0.05 0.10 0.15 0.20 

71 
FIGURE 22. Lateral profiles of the dissipation terms in the turbulent zone. 

Symbols as in figure 21. 
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I I I 1 1 I I I 
0 20 40 60 80 100 120 140 

x/d 
FIGURE 23. Variation of the microscales along the jet centre-plane, -- , Heskestad 
(1965) ; - - -, Heskestad (1965), calculated from ( 8 ~ ' / a t ) ~ / U & ;  -, ReT = [(z)) h,/v] x 
lo-'; w, (v3/s)* X 10'; 0, At; A, h,. 

-- 

The microscales A, and A,, defined by 

increase very slowly with distance from the nozzle (figure 23). A, is almost 
constant for x/d < 80 while A, increases linearly with x for x/d 30. The rate 
of increase of A, with x is given by 

Exceptionally large values, as far as laboratory flows are concerned, of the turbu- 
lent Reynolds number Re, f (u'~)*A,/v were obtained in the two-dimensional 
jet (figure 23). This is because the absolute value of u' initially increased 
rapidly with x while Ag was almost independent of this co-ordinate. The two- 
dimensional jet is thus very suitable for investigating the proposition of local 
isotropy. In  most laboratory flows known to the authors Re, 2: 800 while here 
it attained 1000 (Grant, Stewart & Moilliet 1962 measured Re, = 2000 in 
Discovery Passage off Vancouver Island). The Kolmogorov length scale (vS/e)* 
on the centre-plane of the jet is also shown in figure 23; e is the viscous 
dissipation term. 

I n  order to compare the present measurements of microscales with Heskestad's 
some manipulation is required because Heskestad defined 

[a~,/aX],-, = 9 x 10-4. 

- 

(at aui a 4 
fT/[(Z) 1 ' 

- -  
where (4'2)t = (u'2+ 21'2 + w'2)3, 

A? = (A?)Heekeetad 6(u'P/d2. 
-- 

and thus 
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0 0.1 0.2 0.3 

T 
FIGURE 24. Distribution of microscales across the jet. 0, A,, conventional; 

0,  A,, turbulent zone; A, A,, conventional; A, A,, turbulent zone. 

The two dashed lines shown in figure 23 represent Heskestad’s results. The 
top line was taken from figure 33 of his paper and multiplied by the appropriate 
factor; the bottom line was calculated directly from his figure 20 and agrees 
better with the present data. One may be puzzled at first to discover that in 
spite of the good agreement between Heskestad’s results for (u9*/oM and 
(azc’ /a~)~ at the centre of the jet and our own (figures 8 and 23) there is a difference 
in the values of A,. The discrepancy results from a different decay of the mean 
velocity with 2. By plotting oMA,/v as the ordinate in figure 23 instead of A, 
the differences are mostly reconciled. 

The microscales decline in value towards the outer part of the jet (figure 24). 
This decline occurs for 7 2 0.1, while for 0 < 7 < 0.1 no microscale measured 
changes with 7. This is in contrast to the observations made in the axisymmetric 
jet (Wygnanski & Fiedler 1969), where some microscales increased with 7. 

8. Higher-order correlations and turbulent energy budget 
The six triple velocity products (figures 25-27) and some fourth-order products 

(figure 28) were measured in order to evaluate the budget of turbulent energy 
and to ascertain the corrections to hot-wire readings resulting from the high 
turbulent intensities which occur in this flow. The conventionally measured 
correlations vanish at  the centre of the jet, attaining a maximum around 7 = 0.1, 
and decline to zero at the outer edge. A minor exception is the small negative 
dip in the ur2v‘ correlation for 0 < 7 < 0.035. The negative value of uf2v’ results 

- - 
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7 

FIGURE 25. Conventional (open symbols) and turbulent-zone (solid symbols) triple velocity 
products. 0, (T3/0$) x lo3; A ,  (F/uL) x lo3. 

FIGURE 26. 

2 

1 

0 

-- 

-1 I 
Conventional (open symbols) and turbulent-zone (solid symbols) triple 

products. 0, ( z / n & )  x lo3; A,  ( ~ W ’ ~ / U ~ ~ )  x lo3. 
velocity 
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Heskestad's assumption 

\ \ A 
FIUIJRE 27. Conventional (open symbols) and turbulent-zone (solid symbols) triple velocity 

products. 0, (u'".l/pM) x los; A ,  ( W ' ~ V ' / ~ & )  x lo*. -- 

c 

0.1 0.2 0.3 

7 
FIGURE 28. The flatness factors. - , l/y. Symbols denote the following quantities 
normalized by their centre-plane values: 
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from the fact that zC'2peaks at positive r ]  and some diffusion of ula towards the 
centre of the jet occurs. 

Rather different results are observed for some turbulent-zone triple products, 
particularly (u')3, and ( u ' ~ w ' ) ~ .  The value of (u')3, increclses monotonically with 
7 while ( u ' ~ v ' ) ~  becomes negative for !q > 0.2, i.e. neither quantity drops to zero 
at the edge of the turbulent region of the jet; since turbulent zone averages 
become of the form O / O  as y -+ 0, non-zero values at very large r ]  are not im- 
possible. The very same behaviour was observed on the low velocity side of the 
two-dimensional mixing layer. 

The triple correlation v'w'~ was measured using the method of Townsend 
(1949). The results appear to be smaller than was expected since the ratio 
(V'U'~)~~~/(V'W'~)~~~ N 6. I n  the two-dimensional mixing layer and in the axi- 
symmetric jet 2 < (v'~")max/(v'W''),.x < 3. 

- - 

- 

- -  

- 
Heskestad (1965) did not measure w'wf2 but assumed that 

the same assumption is also made here and the results shown in figure 27 for 
comparison. 

I n  figure 28 lateral distributions of flatness factors are shown. The results 
were normalized by the flatness factors at the centre of the jet and hence should 
represent some measure of the reciprocal 7-1 of the intermittency. The flatness 
factors of the derivative signals indicate a narrower distribution of y-l than 
was actually measured, while the flatness factors of the signals themselves 
indicate a wider distribution of 7-1. The inherent subjectivity in determining y 
from one or two components of the velocity fluctuation is apparent in this figure. 
By using the derivatives only, one gravitates towards the higher frequencies 
and hence more stringent requirements are set for the decision that the flow is 
turbulent. The use of the signal itself brings in some low frequencies which may 
or may not belong to the turbulent flow. The situation is further complicated 
by the fact that the flatness factors of the v' and w' components do not have the 
same distribution as the flatness factor of the u' component. It may also be 
noted that the flatness factors of u' and its temporal derivative are further apart 
than the flatness factors of w' and its derivative. 

The energy equation is written in the form 

Pressure transport Production 

Dissipation 
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I n  deriving this equation self-preservation was assumed and the boundary- 
layer approximation was used for the mean velocity profile. The viscous diffusion 
term was found to be negligible and the viscous dissipation was assumed to be 

Although we realize that the isotropic assumption for the dissipation term 
does not hold very well it  was used here for two reasons. 

(i) Since it is very difficult to measure all the derivatives comprising the dissi- 
pation term, the isotropic assumption is probably as good as any. In  a previous 
paper (Wygnanski & Fiedler 1969) a 'semi-isotropic' assumption was made 
because the isotropic relations held only on the centre-line of the jet. Away from 
the centre 

and the two ratios might have compensated one another so as to yield on the 
average --- 

4 -  (gy _ -  - (?g + -  (;)2. 

(ii) The dissipation yielded by the isotropic assumption is very nearly that 
required to make the integral of the diffusion term (obtained by difference) 
equal to zero, as it should be. If one assumes that 

the dissipation term is 20-30 % lower. The pressure-transport term, which makes 
the largest contribution to the diffusion, becomes too large and the integral of 
the total diffusion across the flow does not vanish. Bradbury (1965) scaled up 
his measured dissipation term to ensure that the net diffusion across the jet was 
indeed zero. He used the same isotropic relations yet he claimed that his hot wire 
did not have a sufficient frequency response or spatial resolution in order to 
measure the dissipation correctly. Heskestad's results for the diffusion term, 
although qualitatively in agreement with ours, do not seem to integrate to zero 
across the jet. 

The terms in the energy equation were computed from the data at x/d = 120 
and are shown in figures 29-31. The energy budget in the turbulent zone should 
be regarded as an average budget for the interior of the turbulent bulges. A 
more representative budget could be obtained if the acquisition of the data 
excluded all thin layers near the interfaces; a t  the time this was not possible and 
consequently the results presented here can be taken as valid for the interior 
of the turbulent zones. 

Some additional observations can be made. 
(i) The dissipation is higher in the central region of the jet than near its 

boundaries. The conventionally averaged dissipation decreases monotonically 
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FIGURE 29. The turbulent energy balance. -, production; - - , convection; 
_. . ._ , diffusion ; - - -. -, dissipation ; - - , pressure transport. 

0.10 

0.05 

0 

- 0.05 

-0.10 

-0.15 

FIGURE 30. The turbulent energy balance in the turbulent zone. Curves as in figure 29. 

with 7 for 7 > 0.05 while the dissipation in the turbulent zone is almost constant 
across the jet. 

(ii) The production is highest at an q corresponding approximately to the 
location of the highest shear stress. The maximum level of the production term 
is almost double the maximum level of the dissipation term. The production in 
the turbulent zone is very nearly the same as the conventionally averaged result. 

(iii) Most of the turbulent energy gained at the centre is by convection. For 
7 < 0.05 the convection term is comparable to the dissipation. 

(iv) I n  the outer part of the jet (q 2 0.2) the diffusion term is equal to  the 
sum of all the other terms in the energy budget. The conventionally measured 
diffusion term has a minimum a t  7 = 0.2 and probably returns to zero at  larger r. 
The diffusion in the turbulent zone remains constant at large 7. 



492 

0.08 

3 0.06 
4 

0.04 

0.02 

0 .  

-0.02 

E .  Cutmark and I .  Wygnanski 

- 
- 

- 

- 

I I I 

20 40---60 
Production - 

-----_____ } Convection --- 

-- , Heskestad (1965); - , present measurements. 
FIGURE 31. Axial distribution of the energy balance on the centre-plane. 
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FIGURE 32. The distribution of the axial and lateral diffusion across the jet. 
-, conventional; - -, turbulent zone. 
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(v) A breakdown of the diffusion term is shown in figure 32. The lateral 
velocity fluctuations transport turbulent energy from the central region of the 
jet to its outskirts, i.e. from a region where the intensity is high to a region where 
it is relatively low. The effect of the assumed v‘w‘~/U$ on the lateral diffusion 
term is not large in spite of the fact that (V’W’~/U&),,,~~ is 2.5 times larger than 
the measured quantity. The effect the assumed quantity has on the pressure 
transport is shown in figure 29. The discrepancy between the two pressure- 
transport curves may be considered as experimental uncertainty. Since there 
is also a gradient of turbulent energy in the axial direction, energy is transported 
downstream (i.e. lost) by the axial fluctuations. 

(vi) The energy transported from the centre of the jet outwards is partly 
lost by dissipation and partly by axial diffusion. The mechanism is very clearly 
visible in the turbulent zone-averaged energy balance (figures 30 and 32). The 
weighting of the data by intermittency masks this effect in the conventional 
budget of turbulent energy. 

The production and convection terms on the axis of the jet (figure 31) are 
independent of the distance from the nozzle. The dissipation term increases 
linearly with x and hence the pressure-transport term decreases accordingly. 
The results are in fairly good agreement with those computed by us from 
Heskestad’s raw data. 

The kinetic energy of the mean motion across the jet was computed from the 
equation 

- -  
-- 

which reduces in the self-preserving region t o  

- -  
OD u1a-21’2 -1 0 -(--)dq. u, U& 

This equation represents the rate of transformation of mean kinetic energy into 
turbulent energy (i.e. turbulent production) and the dissipation by viscous forces. 

From the conventional measurements we find the various integrals to be equal: 

& x 0.061 = - 00167 + ( Y / O M X )  6.196- 0-0048, 

i.e. the kinetic energy at any cross-section of the jet is given by 

E = 0.0367 - 2.2 Re-1 (x/d)”, 

where Re = Uod/v is the Reynolds number at the nozzle. Thus the mass flow in 
the jet increases with x(& = 0.122 (z/d)8), the momentum remains constant and 
the energy drops as x-4. 

The mass flux in the turbulent zone can not be computed very accurately 
because the velocity does not vanish at large q. Nevertheless Qr was computed 
and found to be approximately equal to O.l44(x/d)*. QT > & because we assumed 
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that the entire jet is filled with turbulent fluid; this of course never happens 
over an extended period of time. Similarly the energy flux is given by 

E ,  = 0.0381 - 2-02 Re-I (x /d)A.  

E, is again larger than E because we have excluded the contortions of the 
interface from these calculations. 

9. Some concluding remarks 
The two-dimensional jet becomes self-preserving about 40 slot widths down- 

stream from the nozzle. There is some scant evidence that self-preservation may 
not be universal but depends to a degree on the initial conditions. There are 
differences of approximately 10% in the spread of the jet, differences in the 
decay of its maximum velocity and differences in the location of its hypothetical 
origin as well as differences in the lateral distribution of all three components of 
the turbulent intensity which can easily be attributed to  the different initial 
conditions. A carefully controlled experiment linking the initial conditions to 
the far-field flow certainly seems worth while a t  this stage. 

Three free shear flows, the axisymmetric jet, the two-dimensional jet and the 
mixing layer, have now been investigated using essentially identical equipment 
and procedures. Hence, whatever errors were made in one were most probably 
made in the others. 

The axisymmetric jet is similar to the two-dimensional jet in its distribution of 
mean velocity, intermittency, turbulent intensities, etc. All three flows indicate 
a definite lack of isotropy even in the high wavenumber range, however the two- 
dimensional jet seems to be the most appropriate configuration for further study 
in the laboratory of the question of local isotropy. 

The differences between the turbulent zone-averaged results and the conven- 
tional results in the two-dimensional jet are not large except for WT and third- 
order correlations. It is suggested that the very strong diffusion at the outer 
edge of the turbulent zone in both the mixing layer and the jet should be in- 
vestigated. 

This paper is based on the master’s thesis of the first author. It was initiated 
in 1969 by the second author, who spent a sabbatical year at the Technion. 
The measurements were completed in 1973. During the final stages of the 
investigation the work was supported in part by Grant AFOSR-72-2346 from 
the Air-Force Office of Scientific Research, made to the second author at Tel- 
Aviv University. 
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